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Abstract. Using the Bethe ansatz we study the spectrum of boundary bound states of the
SU(N) generalization of the one-dimensional Hubbard model with open boundaries and applied
boundary potentials. The number of electrons bound by the boundary field is found from the
surface contribution to the energy. Finite size corrections to the low-lying energies in this system
and use of the predictions of boundary conformal field theory allows us to study the exponents
related to the orthogonality catastrophe and absorption edges.

1. Introduction

Boundary conformal field theory (BCFT) [1–3] and the formulation of Bethe ansatz soluble
models on open lattices with potentials applied on the boundary sites [4–7] provide new tools
for studies of problems such as the orthogonality catastrophe [8, 9] and edge singularities
in optical absorption experiments [10–12] in the framework of microscopic models.

The bulk critical behaviour of(1+ 1)-dimensional systems of correlated electrons has
been studied successfully in the Tomonaga–Luttinger model [13–15]. Further insights,
for example on the influence of external fields and lattice effects (back scattering, Mott
transition), have been obtained from exact solutions of integrable lattice models [16–18].
Similarly, studies of lattice models with open boundaries [4, 19, 20] contribute to the
understanding of the impurity effects mentioned above. A feature of these lattice models not
easily included in the field theoretical approach is the generation of a sequence of localized
levels due to a boundary potential (see, for example, [21, 22]). The effect of the occupation
of such bound states on the critical properties of the boundary has been studied in various
one-dimensional electronic models [22–24] and opens new possibilities for the experimental
observation of Luttinger liquid behaviour in quasi-one-dimensional materials.

In addition, the presence of the boundary field gives rise to one of the rare possibilities
to compute certainlocal expectation values for a Bethe ansatz soluble model. The structure
of the Bethe states complicates direct evaluation of the corresponding matrix elements (see
[25]). In lattice models with an external potential coupled to a density at the boundary
site, however, the expectation value of this density can be obtained from the surface terms
to the ground-state energy. This allows us to gain additional information on the physical
properties of the bound states identified from the Bethe ansatz solution. Furthermore, for a
model given only in terms of its spectrum, as is the one considered later, the dependence
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of the local density on the system parameters may provide new insights into the nature of
the microscopic interactions.

The one-dimensional degenerate Hubbard model studied in this paper is an extension
of the Bethe ansatz solution [26] of the usual Hubbard model(N = 2) to an arbitrary
numberN of bands withSU(N) symmetry. More general models with degeneracies due
to spin or orbital degrees of freedom have been introduced to describe the Mott transition
[27] or itinerant ferromagnetism [28]. The interaction terms in the system discussed here
are parametrized by a single parameter, namely the Hubbard interaction 4u (see [29] for
a comprehensive review). Although the corresponding Hamiltonian can be identified in
certain limits [30] its precise form for arbitrary degeneracyN and strength of the Hubbard
interaction is unknown [31]. In this paper we use the fact that in the sector with less than
three populated bands the model reduces to theN = 2 model. The resulting Hamiltonian
on a chain ofL sites subject to an additional chemical potentialp at the first one is given
by†

H|N=2 = −
L−1∑
j=1

∑
α=1,2

(c
†
jαcj+1α + HC)+ 4u

L∑
j=1

nj,1nj,2+ µN̂ − p1N̂1− pLN̂L. (1.1)

cjα (c†jα) are annihilation (creation) operators for electrons withSU(N)-spin α on site

j obeying canonical anticommutation rules,njα = c
†
jαcjα, and N̂1 =

∑N
α=1 n1α, and

N̂ = ∑
j N̂j are number operators. TheN = 2 model (1.1) is soluble by means of the

Bethe ansatz for arbitrary values of the boundary potentialsp1,L [4, 19]. Due to the fact,
thatpi couples to the charge sector only, the extension of the Bethe ansatz to theN -band
case is completely analogous to that for the periodic chain [32–35]. In addition, the result
can be checked against the corresponding continuum model studied in [36].

Our paper is organized as follows: in the following section we introduce the extension
of the Bethe ansatz equations for theN = 2 model [19] to those for the degenerate
SU(N) Hubbard model in the presence of a boundary chemical potentialp at site 1.
Assuming that the coupling ofp to the electrons is still of the form given in (1.1) we
compute the occupation of the first site of the lattice as a function of the boundary potential
and the Coulomb repulsionu in section 3. We find that—depending onp—up to N
electrons can be localized on this site. The position of the corresponding thresholds
is determined by the Coulomb splitting which gives new information on the interaction
part of the completeSU(N) symmetric Hamiltonian. In section 4 we determine the
1/L corrections to the ground-state energy and the low-lying excitations. BCFT results
allow us to extract the scaling dimensions of boundary changing operators from those
spectra which we use to study the effect of the band filling and coupling constant on the
orthogonality and x-ray edge exponents. We find that the number of channels available
to the electrons has a profound effect on these exponents: as a function ofN the edge
exponents become negative leading to the disappearance of observable singularities for any
N > 2.

2. Bethe ansatz for the open degenerate Hubbard model

In the SU(N) generalization of the Hubbard model theNe-particle eigenstates are
parametrized by one set of quasi-momenta{kj }Nej=1 related to the charge degree of freedom

† Here we have chosen the hopping amplitude as our unit of energy (t = 1). For technical reasons the strength
of the on-site Coulomb interaction is given by 4u.
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andN − 1 sets of spin rapidities{λ(r)α }Mr

α=1, r = 1, . . . , N − 1 [32–35]. The extension of
(1.1) to electrons with an internalSU(N) degree of freedom itself is defined through the
set of all possible solutions to the Bethe ansatz equations (BAE) for these parameters (see
also [36])

eikj2(L+1)Bc(kj ;p) =
M1∏
β=1

e1(ηj − λ(1)β )e1(ηj + λ(1)β ) j = 1, . . . , Ne

B(r)s (λ
(r)
α ;p)

Mr−1∏
β=1

e1(λ
(r)
α − λ(r−1)

β )e1(λ
(r)
α + λ(r−1)

β )

Mr+1∏
β=1

e1(λ
(r)
α − λ(r+1)

β )e1(λ
(r)
α + λ(r+1)

β )

=
Mr∏
β=1
β 6=α

e2(λ
(r)
α − λ(r)β )e2(λ

(r)
α + λ(r)β ) α = 1, . . . ,Mr

r = 1, . . . , N − 1 M0 = Ne > M1 > · · · > MN−1 > MN ≡ 0 (2.1)

with en(x) = (x + inu)/(x − inu) and λ(0)j ≡ ηj = sinkj . In the absence of any fields
breaking theSU(N) symmetry the energy of the corresponding state is

E =
Ne∑
j=1

(µ− 2 coskj ). (2.2)

In the case considered here, namely a boundary chemical potentialp at one end of the
lattice as in (1.1), only the charge quasi-momentakj are affected byp and the boundary
phase shifts in (2.1) read

Bc(k;p) =
(

1− p e−ik

1− p eik

)
B(r)s (λ;p) ≡ 1. (2.3)

With these equations (2.1) reduce to those found for theSU(2) invariant case forN = 2
[4, 19].

For a sufficiently strong attractive boundary potential one expects the formation of
localized states for the quasi-particles of the system. Their identification among the Bethe
ansatz many-particle wavefunctions corresponding to solutions of (2.1) is next to impossible;
however, from comparison with analytically accessible occupation numbers (see later)
and with numerical results the creation of bound states due to the boundary potential
can be traced back to the appearance of purely imaginary solutions to the BAE. In the
thermodynamic limit they are of the form (with exponential accuracy)

sin(k̃j ) = it (p)− 2iu(j − 1) j = 1, . . . , Ñc

λ̃
(r)
β = it (p)− iu(2β + r − 2) r = 1, . . . , N − 1, β = 1, . . . , Ñr (2.4)

with

Ñr = min

{
N − r,max

{
0,

⌊
t (p)

2u
− r

2

⌋
+ 1

}}
Ñc = Ñ0 t (p) = p

2
− 1

2p
.

In the ground state for attractive boundary potentials all accessible bound states (2.4)
are occupied; configurations with some of these missing can be identified with sectors of
the Hilbert space containing states with bound holons and spinons.

In the analysis of the BAE the imaginary roots (2.4) should be treated separately from
those associated with bulk modes [22]. This leads to a modification of the boundary phase
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factors in the equations for the latter

Bc(k) = e−t/u(sin(kj ))et/u−2Ñ1
(sin(kj ))

B(r)s (λ) = e2Ñr−1−r+2−t/u(λ
(r)
α )e2Ñr+1−r−t/u(λ

(r)
α )et/u−2Ñr−r (λ

(r)
α )et/u−2Ñr−r+2(λ

(r)
α )

r = 1, . . . , N − 2
= e2ÑN−2+N−3−t/u(λ

(N−1)
α )et/u−4ÑN−1−N+3(λ

(N−1)
α ) r = N − 1. (2.5)

In the thermodynamic limit (L→∞ with Ne/L, Nr/L kept fixed) the ground state and the
low-lying states for fillingNe 6 L are parametrized by real quasi-momenta 0< kj < π and
spin rapiditiesλ(r)α > 0 apart from the imaginary roots (2.4) associated with bound states.
Using standard methods we can rewrite the BAE into a set of linear integral equations for
the corresponding densitiesρc(k) andρr(λ(r)) of the real roots. Symmetrizing the resulting
equations by means of the identificationρi(x) = ρi(−x) one obtains

ρc(k) = 1

π
+ 1

L
τ(0)c (k)+ cosk

∫ 31

−31

dµa1(sink − µ)ρ1(µ)

ρ1(λ) = 1

L
τ
(0)
1 (λ)+

∫ k0

−k0

dk′ a1(λ− sink′)ρc(k′)−
∫ 3r

−3r−1

dµa2(λ− µ)ρr(µ)

+
∫ 3r+1

−3r+1

dµa1(λ− µ)ρr+1(µ)

ρr(λ) = 1

L
τ(0)r (λ)+

∫ 3r−1

−3r−1

dµa1(λ− µ)ρr−1(µ)−
∫ 3r

−3r−1

dµa2(λ− µ)ρr(µ)

+
∫ 3r+1

−3r+1

dµa1(λ− µ)ρr+1(µ) r = 2, . . . , N − 1 (2.6)

with an(x) = (nu/π)/(x2+ (nu)2) and3N ≡ 0. The boundary phase shifts (2.5) give rise
to the terms of order 1/L

τ (0)c (k) = 1

π
− cosk a1(sink)− i

2π
∂k lnBc(k;p)

τ (0)r (λ) = a2(λ)− (1− δr,N−1)a1(λ)− i

2π
∂λ lnB(r)s (λ;p) r = 1, . . . , N − 1. (2.7)

In terms of the solutions to (2.6) the charge and spin-quantum numbers are given as

ne ≡ Ne

L
= 1

2

∫ k0

−k0

dk ρc(k)− 1

2L
mr ≡ Mr

L
= 1

2

∫ 3r

−3r
dµρr(k)− 1

2L
. (2.8)

(The contribution−1/2L is a consequence of the symmetrization of the equations mentioned
above.)

Further simplifications are possible in the case of unbrokenSU(N)-symmetry considered
here. In this case the ground state of the system is anSU(N) singlet withMr = Ne(N−r)/N
spin rapidities at levelr which corresponds to31 = · · · = 3N = ∞. As a consequence, the
densitiesρr(λ), r = 1, . . . , N − 1, can be eliminated from (2.6) by Fourier transformation.
The result is a scalar integral equation for the density of quasi-momenta (ψ(x) is the
Digamma function)

ρc(k) = ρ(0)c (k)+
1

L
τ(0)c +

cosk

2π

∫ k0

−k0

dk′ hN(sink − sink′)ρc(k′)

hN(x) = 1

Nu
Re

{
ψ

(
1+ ix

2Nu

)
− ψ

(
1

N
+ ix

2Nu

)}
. (2.9)
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The driving terms in (2.9) areρ(0)c (k) = 1/π and

τ (0)c (k) = 1

π
+ cos(k)

2πuN
Re

{
9

(
1

N
+α

)
+9

(
1

2N
+α

)
−9

(
1

2
+α

)
−9

(
N + 1

2N
+α

)}
+ p cos(k)− p2

π(1+ p2− 2p cos(k))
+2(t)cos(k)

2πuN
Re

{
9(γ+)−9(β+)+9(γ−)

−9
(
β− + Nb

N

)
+9

(
β+ + 1−Nb

N

)
−9

(
β+ + 1

N

)}
(2.10)

with α = i sin(k)/2uN, β± = α± (t (p)/2uN), γ± = 1+β± andNb = min{N,max{0, 1+
bt (p)/2uc}} bound charges at site 1.

For the discussion of the thermodynamic properties of the system it is convenient to
introduce the dressed energy of holon excitationsεc(k), which is given in terms of the
equation

εc(k) = µ− 2 cosk + 1

2π

∫ k0

−k0

dk′ cosk′hN(sink − sink′)εc(k′). (2.11)

The conditionεc(±k0) = 0 gives an alternative definition of the integration boundaryk0 as
a function of the chemical potential. From (2.2) we obtain the bulk and surface contribution
to the ground-state energy in terms of the quantities introduced above:

E = Lε∞ + f∞ + o(L−1)

= L

2π

∫ k0

−k0

dk ε(k)+
(∫ k0

−k0

dk ε(k)τ (0)c (k)+
Ñc∑
j=1

(µ− 2 cosk̃j )

)
+ o(L−1). (2.12)

Note that the bulk properties of the system are determined completely by theo(L0)-terms
in the integral equation which coincide with those for the periodic system (see [29]). From
this, we conclude that the low-lying excitations of the system for densitiesne < 1 are holon
andSU(N)-spinon excitations with group velocities

vc = 1

πρc(k0)
∂kεc(k)|k=k0 vs = − 1

Nu

∫ k0

−k0
dk cosk εc(k) eπ sink/Nu∫ k0

−k0
dk ρc(k) eπ sink/Nu

(2.13)

respectively. At fillingne = 1 the system undergoes a Mott transition to an insulating
state atu = uc, above which excitations in the charge sector have a gap [37, 38]. The
critical coupling strengthuc is determined by the conditionρc(π) = 0 or equivalently∫ π
−π dk hN(sink) = 2π .

3. Occupation of boundary sites and Friedel’s sum rule

Assuming that the coupling of the boundary potential to the charges in the degenerate
Hubbard model is of the same form as in theSU(2) case (1.1), i.e. via a local potential
−p∑r

α=1 n1α, the expectation value〈N̂1〉 of the occupation of the boundary site can be
determined from the ground-state energy (2.12) by differentiation with respect top

〈N̂1〉 = −∂pE0 = −
Nb∑
j=1

∂pẼj − 1

2

∫ k0

−k0

dk εc(k)

(
p2 cos(k)+ cos(k)− 2p

π(p2+ 1− 2p cos(k))2

+ cos(k)∂p Re{9(γ+)−9(β+)+9(γ−)−9(β− + (Nb/N))
+9(β+ + ((1−Nb)/N))−9(β+ + (1/N))}/2πuN

)
(3.1)
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Figure 1. Boundary occupation〈N̂1〉 in the ground state of theN = 3 model as a function of
the boundary potentialp for (a) u = 1 and varyingne and (b) ne = 0.9 and varyingu.

with Ẽj = − cosk̃j = −2
√

1− (t (p)+ 2u(j − 1))2. For p → ∞ only the sum in (3.1)
contributes, which indicates an occupation of the first site byN charges in the limit of
infinitely strong attraction—the maximum number possible for fermions with an internal
SU(N) degree of freedom. In figure 1 we present results on〈N̂1〉 as a function of boundary
potential for different fillings and coupling constants from numerical solutions of (3.1).

The underlying assumption of a local impurity potential of strengthp can be checked
by comparison of〈N̂1〉 with Friedel’s sum rule [39]: the number of chargesNF attracted by
a local scattering potential is directly related to the phase shiftδ(εF ) at the Fermi surface,
namelyNF = δ(εF )/π . Although these quantities are defined within a system of non-
interacting fermions, Friedel’s sum rule can be applied to the solution of the degenerate
Hubbard model. In the Bethe ansatz solution the phase shift is given byπ2c(p) where

2c(p) = 1

2

∫ k0

−k0

dk τc(k)+ Ñc − 1

2
. (3.2)

(τc(k) is the o(L−1) contribution to the density (2.9).) Taking the number of particles at
site 1 forp→−∞ as a reference we obtain

NF = 2c(p)−2c(p→−∞). (3.3)

In figures 2 and 3 we present numerical data on thep dependence ofNF and 〈N̂1〉 in the
ground state and the state with the local levels unoccupied (Nb = 0). One should noteNF
describes the integrated effect of the local scatterer on the particle density. Since a newly
added bound state is only weakly localized near the threshold this explains the difference
betweenNF and〈N̂1〉 in these regions.

4. Finite size spectra and critical exponents

Following [18] theo(L−1) terms for the ground state (2.12) and the low-lying excitations
of the degenerate Hubbard model can be obtained. Restricting ourselves to theSU(N)
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Figure 2. Comparison of〈N̂1〉 andNF in the ground state of theN = 3 model as a function
of the boundary potentialp for u = 1 (a), u = 10 (b) at ne = 0.5.
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Figure 3. As in figure 2 but in the lowest state with all bound states empty, i.e. without
imaginary roots in the BAE (2.1).

symmetric case again we obtain (see also [36])

E − Lε∞ = f∞ + πvc
L

{
− 1

24
+ 1

2

(
1Ne −2c(p)

zc

)2

+N+e
}

+πvs
L

{
− 1

24
(N − 1)+ 1

2
1M̃r (CN)rs 1M̃s +N+r

}
. (4.1)

Here the numbers1Ne and1M̃r = 1Mr − (1− r/N)1Ne describe the change in the total
number of electrons and electrons with colourr with respect to the ground state for which
1Ne = 2c(p), 1M̃ = 0 at a given value ofp and occupation of the bound states.N+e ,
N+r count the number of particle hole excitations,zc = ξ(k0) is a function of filling and the
coupling constant is related to the compressibility of the electron gas. It is defined in terms
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of the equation

ξ(k) = 1+ 1

2π

∫ k0

−k0

dk′ cosk′hN(sink − sink′)ξ(k′). (4.2)

For fixed particle density,zc decreases from
√
N for non-interacting particles to 1 in the

limit u→∞. CN is the Cartan matrix for the Lie algebraSU(N) (see [18]).
From the finite size corrections in the low-lying energies of a gapless(1 + 1)-

dimensional quantum system subject to various boundary conditions one can obtain the
scaling dimensions of certain boundary changing operators with the predictions of boundary
conformal field theory. These relations can be used to study phenomena such as Anderson’s
orthogonality catastrophe and the related edge singularities in Luttinger liquids [2, 12, 22–
24, 36]. Of particular interest in the context of the present system is the dependence of the
associated critical exponents on the numberN of channels available to the electrons and
the consequences of the presence of bound states. Furthermore, it is possible to study the
behaviour of these quantities in the vicinity of the Mott transition atne = 1, u = uc.

As noted by Anderson [8] the overlap between the ground state|p〉 of a Fermi gas in
the presence of a local perturbation of strengthp and the unperturbed state|0〉 decreases
as a power of the system size, namely|〈p|0〉| ∝ L−x . For the one-dimensional system
considered herex can be related to the difference between theL−1-terms in the ground-
state energies (4.1) for the same numbers of particlesNe and spinMr but different values
of p computed with respect to the same reference state [9, 12, 22]. Sincep enters the finite
size corrections in (4.1) in the charge contribution only, there is no spinon contribution to
the orthogonality exponent and we find

x = 1

2z2
c

(2c(p)−2c(p = 0))2. (4.3)

In figure 4 we present numerical results on thep-dependence ofx for various values of
particle densityne and coupling strengths.
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−5 5 15 25 35 45
p

0

1

2

3

x

u=0.1
u=1.0
u=4.0

(a) (b)

Figure 4. Orthogonality exponent for the overlap between ground states〈0|p〉 for theN = 3
model againstp for (a) u = 1 and varyingne and (b) ne = 0.5 and varyingu.

Closely related to Anderson’s orthogonality catastrophe, but of greater relevance for
possible observation of Luttinger liquid properties in an experiment, are edge singularities
arising in transport measurements involving tunnelling through localized states or x-ray
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absorption profiles in quasi-one-dimensional electronic systems. A simple model describes
the photo-absorption process through the sudden switching of the local electrostatic potential
V due to the creation of a core hole by the x-ray photon [10]. Within this model a
characteristic power-law singularity

I (ω) ∝ 1

|ω − ω0|α (4.4)

is observed in the vicinity of the absorption thresholdω0 and the exponentα can be related
to the phase shiftδ(εF ) due to the local potential [10, 11]. IfV is strong enough to bind
one or more conduction electrons this will give additional thresholds at energyω

(n)

0 with
different edge exponentsα(n).

Again, the absorption intensity (4.4) can be considered as a correlation function of
boundary changing operators in a(1+ 1)-dimensional quantum system and it is possible to
extract the exponentsα by comparing the finite size scaling behaviour of the low-lying states
of the unperturbed system (withperiodic boundary conditions) with those of the system with
a local scatterer described through anopenboundary and boundary potentialsp1 = pL = p
[2, 23]. The finite size corrections to the ground-state energy of the degenerate Hubbard
model with periodic boundary conditions have been obtained in [18]:

E − Lε∞ = −πvc
6L
− πvs

6L
(N − 1). (4.5)

The difference in the universal scaling behaviour of the ground-state energies (4.1) and (4.5)
leads to an upper bound 1−N/8 for the the exponentsα arising in all possible processes.
The quantum numbers1Ne and1Mr in (4.1) have to be adjusted depending on whether
one considers photo-emission or photo-absorption with simultaneous occupation of some of
the bound states ofV . For photo-emission the particle numbers in the system are unchanged
resulting in

αphoto = 1− N
8
− 1

2z2
c

22
c(p) (4.6)

wherep is the strength of the core potential. Similarly, one should choose1Nc = 1,
1Mr = 0 for absorption of the core electron into the conduction band (leaving possible
bound states unoccupied). The corresponding edge exponent is found to be

αband = 2− 5

8
N − 1

2N
− 1

2z2
c

(2c(p)− 1)2 . (4.7)

Note that this exponent is always negative forN > 2 leading to a shoulder in the absorption
profile rather than a singularity. This observation puts a strong constraint on the possibility
of observing edge singularities in quasi-one-dimensional systems of the type discussed here:
in selecting or preparing the material much care should be devoted to reduce the number
of channels participating in the transport of the system. In addition, the strength of the
impurity potentialp should—if possible—be tuned to the region−t < p < t where the
largest exponents are found (see figure 5).

Finally, we consider the edge exponentαabs associated with the absolute threshold for
absorption, namely all bound states occupied in the final state. Formally, this exponent
is given again by (4.7), although2c(p) has to be computed for the state with maximal
number of bound particles. This leads to the same conditions for pronounced singularities
as discussed above. In figure 6 numerical results on this exponent are shown forN = 3.
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Figure 5. Edge exponentαphoto for photoemission into the state without bound charges against
p in theN = 3 model foru = 1 and varyingne.

(a) (b)

Figure 6. Edge exponentαabs at the absolute threshold for x-ray absorption againstp in the
N = 3 model for (a) u = 1 and varying densities and (b) ne = 0.5 and various values ofu.

5. Conclusion

We have studied the spectrum of bound states and boundary critical properties of an
integrableSU(N)-symmetric Hubbard chain. From its low-energy properties this model
is known to be described by aU(1) Gaussian model in the charge sector and the level-one
SU(N) Wess–Zumino–Witten model in the spin sector. These symmetries give rise to a
rich structure of boundary states associated with the holon and spinon excitations of the bulk
system. The spectrum of these bound states gives rise to a sequence of thresholds which
should be observable in absorption profiles or tunnelling rates of quasi-one-dimensional
compounds. The associated edge singularities are found to be most pronounced forN = 2.
This restricts the possibility of their observation in systems where many channels contribute
to the transport properties.
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Appendix. Explicit expressions in the strong coupling limit

For general values of the system parameters the Bethe ansatz integral equations (2.9), (2.11)
and (4.2) have to be solved numerically. Simplifications allowing us to obtain the relevant
quantities in closed form occur in the strong coupling limitu→∞. In this case the kernel
function can be replaced by a constanthN → (ψ(1) − ψ(1/N))/Nu to leading order and
we obtain the following expressions for the boundary phase shifts with maximum number
of bound charges at site 1 (p1 = p, pL = 0) (3.2):

2c(p) = 1

π
arctan

(
p − cos(πnc)

sin(πnc)

)
+ 2(p − 1)

π

(
π(Nb − 1)+ arctan

(
sin(πnc)

t (p)

)
− arctan

(
sin(πnc)

2uN − t (p)
)
+ arctan

(
sin(πnc)

2uNb − t (p)
)

− arctan

(
sin(πnc)

t (p)+ 2u− 2uNb

))
. (A.1)

Similarly we obtain for the orthogonality exponent (4.3)

x = 1

2
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1

π
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(
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t (p)+ 2u− 2uNb

)))2

−→
{

1
2n

2
c p→−∞

1
2(Nb − nc)2 1� p = 2u+ 4un, n ∈ N (plateau value)

(A.2)

and the edge exponents (p1 = pL = p)

αphoto = 1− N
8
− 1
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2
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−1+N
8

p→ 1 from above

αband = 2− 5N

8
− 1

2N
− 1

2

(
2

π
arctan

(
1+ p
1− p tan

(
πnc

2

))
− 3

2

)2



8840 H Frahm and S Ledowski
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(A.3)

Comparison with the numerical results shows good quantitative agreement of these
expressions foru ' 10.
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